Subscribe to Newsletter
  • ACQUIRE

logo

  • Energy
  • Construction
  • Resources
  • Trending
  • Business Insight
  • Events
  • Magazine
  • Advertise
  • Contact
Home
  • Home
  • Energy
  • Construction
  • Resources
  • Trending
  • Business Insight
  • Events
  • Magazine
  • Advertise
  • Contact

Researchers develop ‘world’s most efficient lithium-sulphur battery’

13 Jan, 2020
Associate Professor Matthew Hill, Dr Mahdokht Shaibani and Professor Mainak Majumder with the lithium-sulphur battery design. Image courtesy of Monash University.


Monash University researchers are on the brink of commercialising what is claimed to be the world’s most efficient lithium-sulphur (Li-S) battery, which could outperform current market leaders by more than four times, and power Australia and other global markets well into the future.

Dr Mahdokht Shaibani from Monash University’s Department of Mechanical and Aerospace Engineering has led an international research team that has developed an ultra-high capacity Li-S battery with better performance and less environmental impact than current lithium-ion products.

The battery has the potential of powering a smartphone for five continuous days, or enabling an electric vehicle to drive more than 1000 kilometres without needing to ‘refuel’.

The researchers have an approved filed patent (PCT/AU 2019/051239) for their manufacturing process, and prototype cells have been successfully fabricated by German R&D partners Fraunhofer Institute for Material and Beam Technology.

Some of the world’s largest manufacturers of lithium batteries in China and Europe have expressed interest in upscaling production, with further testing to take place in Australia in early 2020.

Professor Mainak Majumder said this development was a breakthrough for Australian industry and could transform the way phones, cars, computers and solar grids are manufactured in the future.

“Successful fabrication and implementation of Li-S batteries in cars and grids will capture a more significant part of the estimated $213 billion value chain of Australian lithium, and will revolutionise the Australian vehicle market and provide all Australians with a cleaner and more reliable energy market,” Professor Majumder commented.

“Our research team has received more than $2.5 million in funding from government and international industry partners to trial this battery technology in cars and grids from this year, which we’re most excited about.”

Using the same materials in standard lithium-ion batteries, researchers reconfigured the design of sulphur cathodes so they could accommodate higher stress loads without a drop in overall capacity or performance.

Inspired by unique bridging architecture first recorded in processing detergent powders in the 1970s, the team engineered a method that created bonds between particles to accommodate stress and deliver a level of stability not seen in any battery to date.

According to Associate Professor Matthew Hill, attractive performance, as well as lower manufacturing costs, abundant supply of material, ease of processing and reduced environmental footprint make this new battery design attractive for future real-world applications.

“This approach not only favours high-performance metrics and long cycle life, but is also simple and extremely low-cost to manufacture, using water-based processes, and can lead to significant reductions in environmentally hazardous waste,” Associate Professor Hill said.

The research team comprises: Dr Mahdokht Shaibani, Dr Meysam Sharifzadeh Mirshekarloo, Dr M.C. Dilusha Cooray and Professor Mainak Majumder (Monash University); Dr Ruhani Singh, Dr Christopher Easton, Dr Anthony Hollenkamp (CSIRO) and Associate Professor Matthew Hill (CSIRO and Monash University); Nicolas Eshraghi (University of Liege); Dr Thomas Abendroth, Dr Susanne Dorfler, Dr Holger Althues and Professor Stefan Kaskel (Fraunhofer Institute for Material and Beam Technology).

The study was published in Science Advances. More information can be found here.

Related Articles

Battery Show

The Battery Show Asia – Indonesia

Battery Asset Management Summit 2025

Battery Asset Management Summit Australia

Aggreko

Comments

Leave a comment Cancel reply

You must be logged in to post a comment.

Breaking

  • Energy
  • Construction
  • Resources
09 Jul

Federal government funds green iron project in Kwinana

09 Jul

US battery storage market growth defies uncertainty

09 Jul

RISE Accelerator applications have now closed

09 Jul

Sanderson unveils guideline supporting community benefits

03 Jul

Governments double solar battery incentives in NSW

10 Jul

FWPA launches national recycled timber standard

10 Jul

WorldGBC urges stronger building climate policies

25 Jun

Cool project reduces car park surface temperatures

25 Jun

Ocean Reef Marina achieves top sustainability certification

18 Jun

McNab wins Queensland Sustainability Award 2025

10 Jul

AI adoption accelerates the discovery of green ammonia

03 Jul

Pilbara aims to lead clean shipping as a green fuel bunkering hub

03 Jul

Denison Gas pioneers Australia’s energy storage transformation

25 Jun

Japanese scientists create plastic dissolving in seawater

25 Jun

Australia opens largest renewable hydrogen refuelling station

  • BATTERY ASSET MANAGEMENT SUMMIT

Online Magazine

    Current Cover
  • Login
  • Subscribe

Subscribe

Subscribe to Newsletter

Our Titles

  • Share on Newsletter
  • Share on LinkedIn
  • Share on Twitter
  • Share on Facebook
  • Home
  • Contact Us
  • Terms and Conditions
  • Privacy
© Sage Media Group 2025 All Rights Reserved.
×
Authorization
  • Registration
 This feature has been disabled
 This feature has been disabled until further notice, however you may still register
×
Registration
  • Autorization
Register
* All fields required