Follow us:
Subscribe to our e-newsletter

logo

  • Energy
  • Construction
  • Resources
  • Projects
  • Products and Services
  • Events
  • Online Magazine
  • Advertise
  • Contact
Home
  • Energy
  • Construction
  • Resources
  • Projects
  • Products
  • Events
  • Online Magazine
  • Advertise
  • Contact

GHGs could become environmentally-friendly chemicals and biofuels

24 Feb, 2021
14
chemicals and biofuels
Image: Artist’s render of a DNA structure.


Greenhouse gas waste from factories could be turned into environmentally-friendly chemicals and biofuels under an international project to better understand the gene function of bacteria.

Dr Esteban Marcellin from the Australian Institute for Bioengineering and Nanotechnology (AIBN) has secured funding for a large-scale study that will improve the efficiency of biofuel and chemical manufacture while recycling waste carbon.

Bringing together The University of Queensland, ARC Centre of Excellence in Synthetic Biology, the U.S. Department of Energy Joint Genome Institute (JGI), LanzaTech and Novo Nordisk Foundation Center for Biosustainability (DTU Biosustain), Dr Marcellin will investigate all 4000 genes of acetogen bacteria to better understand their metabolism.

Dr Marcellin uses anerobic bacteria or acetogens, which use carbon monoxide or carbon dioxide (CO2) to grow, to convert waste CO2 into useful chemicals and biofuels.

“Most of our chemicals are currently made from fossil fuels, but we are using recycled carbon to feed the bacteria, producing cleaner, greener chemicals and also using up gases which would usually contribute to climate change,” Dr Marcellin said.

The collaborators hope to learn exactly how all these bacteria make energy, with the goal to improve manufacturing efficiency and create a new way to make chemicals, bypassing fossil fuels.

“Understanding what all the genes do is a radical group effort, using cutting-edge automated genetic engineering and generating massive data sets which will need super-computers to analyse,” Dr Marcellin commented.

DNA for the project will be synthesised at the Joint Genome Institute in the U.S., then applied at LanzaTech to knock out each gene individually, using their high throughput cutting-edge robotic technology.

“If we didn’t have this collaboration, it would take hundreds of PhD students and millions of dollars to make this happen,” Dr Marcellin said.

“Using the robots at LanzaTech’s biofoundry, we can automate this process, and it will take only a few years to complete this project.”

Professor Lars Nielsen’s group from DTU Biosustain, which specialises in analysing big data, will be responsible for making sense of the enormous amount of data the project will produce.

“The sheer volume of data generated in this study enables us to use advanced analytics to explore and explain the complex interaction between bacterial genes and their environment leading to the observed phenotype or behaviour,” Professor Nielsen said.

“Knowing the intricate details about the metabolism of these bacteria will help us improve their ability to transform greenhouse gas waste from factories into chemicals and fuels, and also encourage the bacteria to make an even wider variety of useful products.”

Related Articles

Gladstone

Queensland Government funding fast-tracks Gladstone hydrogen hub

Budget

State Budget powers Queensland’s energy future

WasteSorted Awards

Technology investment in VIC to transform recycling into new products

Egypt

Egypt project to produce 300,000 tonnes of green hydrogen per year

Comments

Leave a comment Cancel reply

You must be logged in to post a comment.

Latest Posts

  • Energy
  • Construction
  • Resources
  • Agriculture
30 Jun

AEMO releases energy roadmap to phase out coal generation

30 Jun

Cairns charging up with new network-connected battery

30 Jun

MGA Thermal announces breakthrough in storage technology

29 Jun

Survey shows majority of Australians want investment in renewables

29 Jun

New renewably-powered desalination plant planned for Alkimos

23 Jun

Cities of the future may be built with algae-grown limestone

22 Jun

Global sophisticated green building designs awarded

22 Jun

A national environmental impact standard to measure embodied carbon

15 Jun

Australian cities falling behind global cities on sustainability according to 2022 Sustainable Cities Index

14 Jun

Only timber can tackle climate change – timber and the latest construction technology

29 Jun

Binding methane with metal: a new hope for recycling the potent fossil fuel

29 Jun

WA’s first Clean Energy Future Fund project now operational

29 Jun

New battery and critical minerals prospectus to power investment

29 Jun

Australian-German business coalition produces a roadmap for large scale green hydrogen import to Germany

24 Jun

Farmers say food supply must come before gas export industry

Online Magazine

    Current Cover
  • Login
  • Subscribe

Subscribe

Subscribe to our newsletter

Our Titles

  • Home
  • Contact Us
  • Terms and Conditions
  • Privacy
© Sage Media Group 2022 All Rights Reserved.
×
Authorization
  • Registration
 This feature has been disabled
 This feature has been disabled until further notice, however you may still register
×
Registration
  • Autorization
Register
* All fields required