Follow us:
Subscribe to our e-newsletter

logo

  • Energy
  • Construction
  • Resources
  • Projects
  • Products and Services
  • Events
  • Online Magazine
  • Advertise
  • Contact
Home
  • Energy
  • Construction
  • Resources
  • Projects
  • Products
  • Events
  • Online Magazine
  • Advertise
  • Contact

Researchers develop net-zero liquid fuel to power cars

14 Oct, 2021
2



Researchers from Monash University and Hokkaido University have developed a method that has the potential to power cars more sustainably. 

The method converts carbon dioxide into a diesel-range fuel and has the potential to produce a net-zero liquid fuel alternative to power cars more sustainably.

When carbon dioxide (CO2) is added to the manufacturing process of fuel production, it has the capability to produce fuels that reduce or reverse the net CO2 emissions.

When the hydrogen required for this process is supplied via solar powered water electrolysis, the entire process becomes completely renewable. The end result is a net-zero carbon emitting fuel product.

The transition to 100 per cent renewable energy resources is essential to mitigate the greenhouse gas emissions from the use of fossil fuels over the last century.

The research, which was recently published in the Journal of Energy Chemistry, offers a diesel-range fuel alternative which has the capability to be applied anywhere in the world.

Monash University Department of Chemical and Biological Engineering Associate Professor Akshat Tanksale said OME (oxymethylene ethers) are among a number of fuel alternatives that are attracting increasing attention for their net-zero carbon emitting properties.

“OME is a diesel blend or substitute fuel for which we are reporting the best yield to the best of our knowledge anywhere in the world, and when coupled with green hydrogen, the manufacturing method we’re proposing can provide net-zero liquid fuel,” Mr Tanksale said.

Dimethoxymethane (DMM), which is a diesel blend fuel and the simplest form of an OME, is currently being researched with high interest due to its unique fuel properties.

Commercially, it can be produced via a two step-process of methanol oxidation to make formaldehyde, followed by coupling with methanol. However, currently both methanol and formaldehyde are produced from natural gas.

In the method developed by Monash, carbon dioxide, hydrogen and methanol are used as a feedstock for producing DMM in a single reactor.

The team developed a novel catalyst based on ruthenium nanoparticles which make this reaction possible.

An added advantage is that this reaction takes place at much lower temperatures than conventional methanol and formaldehyde production methods, making it significantly more energy efficient.

Monash engineers are also working on a methanol synthesis method from carbon dioxide and hydrogen, closing the carbon loop to renewables only.

Hokkaido University Institute for Catalysis Dr Abhijit Shrotri said recycling waste carbon dioxide to OME is a promising way to produce fuel with a significantly lower carbon footprint.

“We are glad we could collaborate with the team at Monash to further understand the role of catalysts in this state-of-the-art work,” Mr Shrotri said.

The project has recently received funding for further research into the industrialisation and scale-up by the Hindustan Petroleum Corporation Limited (HPCL), India, bringing net-zero liquid fuels closer to reality.

HPCL Dr G Valavarasu said the company’s collaboration with Monash University to develop and scale-up OME production from CO2 will certainly contribute to the development of a process for CO2 conversion into fuels which is proving necessary in the current climate.

“CO2 valorization to fuels is one of the prominent pathways to achieving net-zero in the future and researchers are exploring efficient processes for this conversion,” Dr Valavarasu said.

“We’re currently focusing on several CO2 conversion technologies for the development of industrially scalable catalysts and processes.

Dr Waqar Ahmad who recently completed his PhD on the project added that a unique pore structure that could synthesise large molecules like DMM was developed in the study.

“The particle size of ruthenium, along with the pore size and acidity of the catalyst, are extremely important for this reaction to take place.

“By precisely controlling these parameters we were able to achieve the highest yield of DMM reported in literature.”

Related Articles

FMG to develop world-first zero emission Infinity Train

Mulpha

Mulpha to build zero carbon precinct in Norwest, NSW

Electric Vehicle Council

Comments

Leave a comment Cancel reply

You must be logged in to post a comment.

Latest Posts

  • Energy
  • Construction
  • Resources
  • Agriculture
30 Jun

AEMO releases energy roadmap to phase out coal generation

30 Jun

MGA Thermal announces breakthrough in storage technology

29 Jun

Survey shows majority of Australians want investment in renewables

29 Jun

New renewably-powered desalination plant planned for Alkimos

24 Jun

EEC Professional Certifications to prepare Australia’s energy workforce

05 Jul

Western Australian “My Home” Project Shortlisted for Prestigious 2022 SHC Solar Award

23 Jun

Cities of the future may be built with algae-grown limestone

22 Jun

Global sophisticated green building designs awarded

22 Jun

A national environmental impact standard to measure embodied carbon

15 Jun

Australian cities falling behind global cities on sustainability according to 2022 Sustainable Cities Index

29 Jun

Binding methane with metal: a new hope for recycling the potent fossil fuel

29 Jun

WA’s first Clean Energy Future Fund project now operational

29 Jun

New battery and critical minerals prospectus to power investment

29 Jun

Australian-German business coalition produces a roadmap for large scale green hydrogen import to Germany

24 Jun

Farmers say food supply must come before gas export industry

Online Magazine

    Current Cover
  • Login
  • Subscribe

Subscribe

Subscribe to our newsletter

Our Titles

  • Home
  • Contact Us
  • Terms and Conditions
  • Privacy
© Sage Media Group 2022 All Rights Reserved.
×
Authorization
  • Registration
 This feature has been disabled
 This feature has been disabled until further notice, however you may still register
×
Registration
  • Autorization
Register
* All fields required