Subscribe to Newsletter
  • ACQUIRE

logo

  • Energy
  • Construction
  • Resources
  • Trending
  • Business Insight
  • Events
  • Magazine
  • Advertise
  • Contact
Home
  • Home
  • Energy
  • Construction
  • Resources
  • Trending
  • Business Insight
  • Events
  • Magazine
  • Advertise
  • Contact

Making hydrogen straight from seawater with no desalination

15 Feb, 2023
Image supplied.


A new method from RMIT University researchers splits seawater directly into hydrogen and oxygen – skipping the need for desalination and its associated cost, energy consumption and carbon emissions.

Hydrogen has long been touted as a clean future fuel and a potential solution to critical energy challenges, especially for industries that are harder to decarbonise like manufacturing, aviation and shipping.

Almost all the world’s hydrogen currently comes from fossil fuels and its production is responsible for around 830 million tonnes of carbon dioxide a year, equivalent to the annual emissions of the United Kingdom and Indonesia combined.

But emissions-free ‘green’ hydrogen, made by splitting water, is so expensive that it is largely commercially unviable and accounts for just 1% of total hydrogen production globally.

Lead researcher Dr Nasir Mahmood, a Vice-Chancellor’s Senior Research Fellow at RMIT, said green hydrogen production processes were both costly and relied on fresh or desalinated water.

“We know hydrogen has immense potential as a clean energy source, particularly for the many industries that can’t easily switch over to be powered by renewables,” Mahmood said.

“But to be truly sustainable, the hydrogen we use must be 100% carbon-free across the entire production life cycle and must not cut into the world’s precious freshwater reserves.

“Our method to produce hydrogen straight from seawater is simple, scaleable and far more cost-effective than any green hydrogen approach currently in the market.

“With further development, we hope this could advance the establishment of a thriving green hydrogen industry in Australia.”

A provisional patent application has been filed for the new method, detailed in a lab-scale study published in Wiley journal, Small.

Splitting the difference: a catalyst for seawater

To make green hydrogen, an electrolyser is used to send an electric current through water to split it into its component elements of hydrogen and oxygen.

These electrolysers currently use expensive catalysts and consume a lot of energy and water – it can take about nine litres to make one kilogram of hydrogen. They also have a toxic output: not carbon dioxide, but chlorine.

“The biggest hurdle with using seawater is the chlorine, which can be produced as a by-product. If we were to meet the world’s hydrogen needs without solving this issue first, we’d produce 240 million tons per year of chlorine each year – which is three to four times what the world needs in chlorine. There’s no point replacing hydrogen made by fossil fuels with hydrogen production that could be damaging our environment in a different way,” Mahmood said.

“Our process not only omits carbon dioxide, but also has no chlorine production.”

The new approach devised by a team in the multidisciplinary Materials for Clean Energy and Environment (MC2E) research group at RMIT uses a special type of catalyst developed to work specifically with seawater.

The study, with PhD candidate Suraj Loomba, focused on producing highly efficient, stable catalysts that can be manufactured cost-effectively.

“These new catalysts take very little energy to run and could be used at room temperature,” Mahmood said.

“While other experimental catalysts have been developed for seawater splitting, they are complex and hard to scale.

“Our approach focused on changing the internal chemistry of the catalysts through a simple method, which makes them relatively easy to produce at large-scale so they can be readily synthesised at industrial scales,” Loomba said.

Mahmood said the technology had promise to significantly bring down the cost of electrolysers – enough to meet the Australian Government’s goal for green hydrogen production of $2/kilogram, to make it competitive with fossil fuel-sourced hydrogen.
The researchers at RMIT are working with industry partners to develop aspects of this technology.

The next stage in the research is the development of a prototype electrolyser that combines a series of catalysts to produce large quantities of hydrogen.

Related Articles

Connecting Hydrogen APAC 2025

Hydrogen Technology Conference & Expo

Hydrogen Technology Conference & Expo

Wood Mackenzie Hydrogen Conference

Wood Mackenzie Hydrogen Conference

Wood Mackenzie Hydrogen Conference 2024

Comments

Leave a comment Cancel reply

You must be logged in to post a comment.

Breaking

  • Energy
  • Construction
  • Resources
09 Jul

Federal government funds green iron project in Kwinana

09 Jul

US battery storage market growth defies uncertainty

09 Jul

RISE Accelerator applications have now closed

09 Jul

Sanderson unveils guideline supporting community benefits

03 Jul

Governments double solar battery incentives in NSW

10 Jul

FWPA launches national recycled timber standard

10 Jul

WorldGBC urges stronger building climate policies

25 Jun

Cool project reduces car park surface temperatures

25 Jun

Ocean Reef Marina achieves top sustainability certification

18 Jun

McNab wins Queensland Sustainability Award 2025

17 Jul

ROSEN wins contract for UK decarbonisation project

17 Jul

Western Australia launches $50m battery initiative

17 Jul

Innovative UNSW research harnesses ocean currents

10 Jul

AI adoption accelerates the discovery of green ammonia

03 Jul

Pilbara aims to lead clean shipping as a green fuel bunkering hub

  • BATTERY ASSET MANAGEMENT SUMMIT

Online Magazine

    Current Cover
  • Login
  • Subscribe

Subscribe

Subscribe to Newsletter

Our Titles

  • Share on Newsletter
  • Share on LinkedIn
  • Share on Twitter
  • Share on Facebook
  • Home
  • Contact Us
  • Terms and Conditions
  • Privacy
© Sage Media Group 2025 All Rights Reserved.
×
Authorization
  • Registration
 This feature has been disabled
 This feature has been disabled until further notice, however you may still register
×
Registration
  • Autorization
Register
* All fields required